extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3×C2×C6) = C6×D4⋊2S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.1(S3xC2xC6) | 288,993 |
C22.2(S3×C2×C6) = C3×S3×C4○D4 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(S3xC2xC6) | 288,998 |
C22.3(S3×C2×C6) = C3×D4○D12 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.3(S3xC2xC6) | 288,999 |
C22.4(S3×C2×C6) = C3×Q8○D12 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(S3xC2xC6) | 288,1000 |
C22.5(S3×C2×C6) = C6×C4○D12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C22 | 48 | | C2^2.5(S3xC2xC6) | 288,991 |
C22.6(S3×C2×C6) = C3×D4⋊6D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C22 | 24 | 4 | C2^2.6(S3xC2xC6) | 288,994 |
C22.7(S3×C2×C6) = C3×Q8.15D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.7(S3xC2xC6) | 288,997 |
C22.8(S3×C2×C6) = C12×Dic6 | central extension (φ=1) | 96 | | C2^2.8(S3xC2xC6) | 288,639 |
C22.9(S3×C2×C6) = S3×C4×C12 | central extension (φ=1) | 96 | | C2^2.9(S3xC2xC6) | 288,642 |
C22.10(S3×C2×C6) = C3×C42⋊2S3 | central extension (φ=1) | 96 | | C2^2.10(S3xC2xC6) | 288,643 |
C22.11(S3×C2×C6) = C12×D12 | central extension (φ=1) | 96 | | C2^2.11(S3xC2xC6) | 288,644 |
C22.12(S3×C2×C6) = C3×C23.16D6 | central extension (φ=1) | 48 | | C2^2.12(S3xC2xC6) | 288,648 |
C22.13(S3×C2×C6) = C3×S3×C22⋊C4 | central extension (φ=1) | 48 | | C2^2.13(S3xC2xC6) | 288,651 |
C22.14(S3×C2×C6) = C3×Dic3⋊4D4 | central extension (φ=1) | 48 | | C2^2.14(S3xC2xC6) | 288,652 |
C22.15(S3×C2×C6) = C3×Dic6⋊C4 | central extension (φ=1) | 96 | | C2^2.15(S3xC2xC6) | 288,658 |
C22.16(S3×C2×C6) = C3×S3×C4⋊C4 | central extension (φ=1) | 96 | | C2^2.16(S3xC2xC6) | 288,662 |
C22.17(S3×C2×C6) = C3×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | C2^2.17(S3xC2xC6) | 288,663 |
C22.18(S3×C2×C6) = C3×Dic3⋊5D4 | central extension (φ=1) | 96 | | C2^2.18(S3xC2xC6) | 288,664 |
C22.19(S3×C2×C6) = Dic3×C2×C12 | central extension (φ=1) | 96 | | C2^2.19(S3xC2xC6) | 288,693 |
C22.20(S3×C2×C6) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | C2^2.20(S3xC2xC6) | 288,694 |
C22.21(S3×C2×C6) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | C2^2.21(S3xC2xC6) | 288,696 |
C22.22(S3×C2×C6) = C3×C23.26D6 | central extension (φ=1) | 48 | | C2^2.22(S3xC2xC6) | 288,697 |
C22.23(S3×C2×C6) = C6×D6⋊C4 | central extension (φ=1) | 96 | | C2^2.23(S3xC2xC6) | 288,698 |
C22.24(S3×C2×C6) = C12×C3⋊D4 | central extension (φ=1) | 48 | | C2^2.24(S3xC2xC6) | 288,699 |
C22.25(S3×C2×C6) = C3×D4×Dic3 | central extension (φ=1) | 48 | | C2^2.25(S3xC2xC6) | 288,705 |
C22.26(S3×C2×C6) = C3×Q8×Dic3 | central extension (φ=1) | 96 | | C2^2.26(S3xC2xC6) | 288,716 |
C22.27(S3×C2×C6) = C6×C6.D4 | central extension (φ=1) | 48 | | C2^2.27(S3xC2xC6) | 288,723 |
C22.28(S3×C2×C6) = C2×C6×Dic6 | central extension (φ=1) | 96 | | C2^2.28(S3xC2xC6) | 288,988 |
C22.29(S3×C2×C6) = S3×C22×C12 | central extension (φ=1) | 96 | | C2^2.29(S3xC2xC6) | 288,989 |
C22.30(S3×C2×C6) = C2×C6×D12 | central extension (φ=1) | 96 | | C2^2.30(S3xC2xC6) | 288,990 |
C22.31(S3×C2×C6) = S3×C6×Q8 | central extension (φ=1) | 96 | | C2^2.31(S3xC2xC6) | 288,995 |
C22.32(S3×C2×C6) = C6×Q8⋊3S3 | central extension (φ=1) | 96 | | C2^2.32(S3xC2xC6) | 288,996 |
C22.33(S3×C2×C6) = Dic3×C22×C6 | central extension (φ=1) | 96 | | C2^2.33(S3xC2xC6) | 288,1001 |
C22.34(S3×C2×C6) = C3×C12⋊2Q8 | central stem extension (φ=1) | 96 | | C2^2.34(S3xC2xC6) | 288,640 |
C22.35(S3×C2×C6) = C3×C12.6Q8 | central stem extension (φ=1) | 96 | | C2^2.35(S3xC2xC6) | 288,641 |
C22.36(S3×C2×C6) = C3×C4⋊D12 | central stem extension (φ=1) | 96 | | C2^2.36(S3xC2xC6) | 288,645 |
C22.37(S3×C2×C6) = C3×C42⋊7S3 | central stem extension (φ=1) | 96 | | C2^2.37(S3xC2xC6) | 288,646 |
C22.38(S3×C2×C6) = C3×C42⋊3S3 | central stem extension (φ=1) | 96 | | C2^2.38(S3xC2xC6) | 288,647 |
C22.39(S3×C2×C6) = C3×Dic3.D4 | central stem extension (φ=1) | 48 | | C2^2.39(S3xC2xC6) | 288,649 |
C22.40(S3×C2×C6) = C3×C23.8D6 | central stem extension (φ=1) | 48 | | C2^2.40(S3xC2xC6) | 288,650 |
C22.41(S3×C2×C6) = C3×D6⋊D4 | central stem extension (φ=1) | 48 | | C2^2.41(S3xC2xC6) | 288,653 |
C22.42(S3×C2×C6) = C3×C23.9D6 | central stem extension (φ=1) | 48 | | C2^2.42(S3xC2xC6) | 288,654 |
C22.43(S3×C2×C6) = C3×Dic3⋊D4 | central stem extension (φ=1) | 48 | | C2^2.43(S3xC2xC6) | 288,655 |
C22.44(S3×C2×C6) = C3×C23.11D6 | central stem extension (φ=1) | 48 | | C2^2.44(S3xC2xC6) | 288,656 |
C22.45(S3×C2×C6) = C3×C23.21D6 | central stem extension (φ=1) | 48 | | C2^2.45(S3xC2xC6) | 288,657 |
C22.46(S3×C2×C6) = C3×C12⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.46(S3xC2xC6) | 288,659 |
C22.47(S3×C2×C6) = C3×Dic3.Q8 | central stem extension (φ=1) | 96 | | C2^2.47(S3xC2xC6) | 288,660 |
C22.48(S3×C2×C6) = C3×C4.Dic6 | central stem extension (φ=1) | 96 | | C2^2.48(S3xC2xC6) | 288,661 |
C22.49(S3×C2×C6) = C3×D6.D4 | central stem extension (φ=1) | 96 | | C2^2.49(S3xC2xC6) | 288,665 |
C22.50(S3×C2×C6) = C3×C12⋊D4 | central stem extension (φ=1) | 96 | | C2^2.50(S3xC2xC6) | 288,666 |
C22.51(S3×C2×C6) = C3×D6⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.51(S3xC2xC6) | 288,667 |
C22.52(S3×C2×C6) = C3×C4.D12 | central stem extension (φ=1) | 96 | | C2^2.52(S3xC2xC6) | 288,668 |
C22.53(S3×C2×C6) = C3×C4⋊C4⋊S3 | central stem extension (φ=1) | 96 | | C2^2.53(S3xC2xC6) | 288,669 |
C22.54(S3×C2×C6) = C3×C12.48D4 | central stem extension (φ=1) | 48 | | C2^2.54(S3xC2xC6) | 288,695 |
C22.55(S3×C2×C6) = C3×C23.28D6 | central stem extension (φ=1) | 48 | | C2^2.55(S3xC2xC6) | 288,700 |
C22.56(S3×C2×C6) = C3×C12⋊7D4 | central stem extension (φ=1) | 48 | | C2^2.56(S3xC2xC6) | 288,701 |
C22.57(S3×C2×C6) = C3×C23.23D6 | central stem extension (φ=1) | 48 | | C2^2.57(S3xC2xC6) | 288,706 |
C22.58(S3×C2×C6) = C3×C23.12D6 | central stem extension (φ=1) | 48 | | C2^2.58(S3xC2xC6) | 288,707 |
C22.59(S3×C2×C6) = C3×C23⋊2D6 | central stem extension (φ=1) | 48 | | C2^2.59(S3xC2xC6) | 288,708 |
C22.60(S3×C2×C6) = C3×D6⋊3D4 | central stem extension (φ=1) | 48 | | C2^2.60(S3xC2xC6) | 288,709 |
C22.61(S3×C2×C6) = C3×C23.14D6 | central stem extension (φ=1) | 48 | | C2^2.61(S3xC2xC6) | 288,710 |
C22.62(S3×C2×C6) = C3×C12⋊3D4 | central stem extension (φ=1) | 48 | | C2^2.62(S3xC2xC6) | 288,711 |
C22.63(S3×C2×C6) = C3×Dic3⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.63(S3xC2xC6) | 288,715 |
C22.64(S3×C2×C6) = C3×D6⋊3Q8 | central stem extension (φ=1) | 96 | | C2^2.64(S3xC2xC6) | 288,717 |
C22.65(S3×C2×C6) = C3×C12.23D4 | central stem extension (φ=1) | 96 | | C2^2.65(S3xC2xC6) | 288,718 |
C22.66(S3×C2×C6) = C3×C24⋊4S3 | central stem extension (φ=1) | 24 | | C2^2.66(S3xC2xC6) | 288,724 |